
A Trace Model of an Imperative Multi-Stage Language

Haoxuan Yin1, Andrzej Murawski1, and Luke Ong2

1University of Oxford
2Nanyang Technological University

Multi-stage programming languages allow users to write programs that can be executed at separate stages.
They provide a mechanism of converting a general-purpose program into a specialized, more efficient program. For
example, consider the imperative power function given by Calcagno, Moggi, and Sheard (2003). The program is
written in modern MetaOCaml syntax (Kiselyov, 2023; Kiselyov, 2014) for readability.

let rec power n x y =

if n = 0 then y := 1

else begin power (n-1) x y; y := !y * x end

let rec power_staged_gen n x y =

if n = 0 then .< .~y := 1 >.

else .< .~(power_staged_gen (n - 1) x y); .~y := !(.~y) * .~x >.

let power_staged n = Runcode.run

.< fun x y -> .~(power_staged_gen n .<x>. .<y>.) >.

let power_staged_3 = power_staged 3

(* power_staged_3 = fun x y ->

begin y := 1; y := !y * x; y := !y * x; y := !y * x end *)

The power n x y function is an unstaged, general-purpose program that computes xn and stores the result
in y. Sometimes, we may know the value of n before knowing the values of x and y, or we may need to run the
program multiple times for a fixed n and various different xs and ys. In these cases, it is helpful to carry out
the computations related to n in advance. The power staged function is the same imperative program as power
except for staging annotations and η expansions. It treats n as a normal variable that is known immediately, and
x and y as staged variables that will only be supplied later. Then, for example, we can generate the function
power staged 3 as soon as we have a particular n = 3. This specialized function is more efficient than the original
power function because it does not contain recursion or branching.

MetaML (Taha and Sheard, 2000) is the classic language for multi-stage programming. It is theoretically the
same as and practically the ancestor of modern MetaOCaml. As shown in the above example, MetaML has three
key constructs. Bracket ⟨M⟩ turns a term into a piece of code. A piece of code is considered a value and its content
is not evaluated during execution. Escape ˜M removes the outermost bracket in M and is used to assemble small
pieces of code into a larger one. Run run M executes the content of the code M .

When staging a conventional program, a critical concern is whether the staging is faithful. Of course, we do not
expect the staged program to have exactly the same meaning as the original program, because staging can advance
or postpone certain computations. But we do expect them to be equivalent under some additional conditions. In
the above imperative power example, a reasonable expectation is that power and λnxy.power staged n x y should
be equivalent. To address this concern, we need to settle a theoretical foundation for the following question:

When are two imperative MetaML programs equivalent?

This is essentially the full abstraction problem (Milner, 1977), where one looks for a sound and complete model
that captures contextual equivalence. Two programs M1 and M2 are said to be contextually equivalent if their
observable behaviours such as termination are the same in all suitable contexts.

Operational game semantics (Laird, 2007; Jaber and Murawski, 2021) has been successfully used to construct
fully abstract models for various programming languages. It represents the behaviour of a program in a context
as a sequence of interactions—called a trace—between the program and the context. The semantics of a program
is then given by a trace model, which consists of all the traces that the program can generate according to a set
of transition rules. This approach is valued for its intuitive, operational nature and is particularly well-suited to
imperative programming languages.

In this paper, we consider an imperative variant of MetaML, MiniMLmeta
ref , as introduced by Calcagno, Moggi,

and Sheard (2003), and give a sound and complete operational game semantics for this language. Our main
contributions are as follows.

1

1 Partially Closed Instances of Use

Programming language researchers utilize closed instances of use (CIU) (Honsell et al., 1995; Talcott, 1998)
approximations, which say that equivalence under all suitable contexts coincides with equivalence under all suitable
evaluation contexts, heaps, and substitutions that close all free variables. Inoue and Taha (2016) pointed out that
the evaluation of a closed term in MetaML might involve evaluation of open terms in the process. In contrast to
conventional programs, where the body of an abstraction λx.M is never evaluated until x has been substituted
away by β-reduction, in staged languages evaluation can go under a lambda, if the lambda abstraction is deferred
to a later stage and the redex is fired at the current stage. For example, the closed term ⟨λx.˜((λy.y)⟨x⟩)⟩ can
be decomposed into evaluation context ⟨λx.˜•⟩ and redex (λy.y)⟨x⟩, and the redex contains a free occurrence
of the variable x. Traditional proof methods for CIU fail because of this.1 In this paper, we define a partially
closed instances of use (PCIU) approximation instead, and show that it coincides with contextual equivalence for
MiniMLmeta

ref . As evaluations can only go under a lambda abstraction when it occurs at a future stage (stage 1 or
above), in PCIU we only consider substitutions that substitute away all variables declared to be at the current
stage (stage 0). And the resulting term is partially closed, because it may only contain free variables at stage 1 or
above.

2 Trace Model

With the above preparations, we give a fully abstract trace model for MiniMLmeta
ref . As an example, consider the

following two traces that might be generated by the imperative power programs above.

t1 = (f1, ∅) (f1(3), ∅) (f2, ∅) (f2(2), ∅) (f3, ∅) (f3(ℓ1), {ℓ1 7→ 0}) (8, {ℓ1 7→ 8})
t2 = (f1, ∅) (f1(−1), ∅) (f2, ∅)

One of the traces that can be generated by power staged is t1. In this trace, the program first announces itself
as a function represented by the name f1. Then the context asks the result of applying the function f1 to 3, and
the program responds with another function name f2. The name f2 essentially denotes the result of computing
power staged 3, but its underlying value is hidden to the context. The context further supplies two arguments
x = 2 and y = ℓ1, and in the end the program can respond that the result of the computation is 8 and modify y
accordingly.

The trace t1 can also be generated by power and λnxy.power staged n x y, indicating that all three programs
can compute the power function correctly. However, as a direct consequence of staging, power staged starts
computation as soon as n is available, while the other two only start computation when all three arguments are
available. Therefore, when we supply a faulty n = −1, power and λnxy.power staged n x y will still be able to
produce trace t2, while power staged fails to do so because it enters a loop immediately. Our model will be able
to give

Tr(power staged) ⫋ Tr(power) = Tr(λnxy.power staged n x y)

and given that it is fully abstract, we can deduce

power staged ⪉ power ≈ λnxy.power staged n x y

in terms of contextual equivalence. The equivalence power ≈ λnxy.power staged n x y shows the faithfulness of
staging in the sense that it never gives wrong answers.

3 Applications

Now we use examples to illustrate how our system can be used to prove equivalences or inequivalences between
programs. For a start, we observe that MiniMLmeta

ref turns out be a conservative extension of the underlying
stage-free language MiniMLref (Calcagno, Moggi, and Sheard, 2003).

Then we explore the relationship among MetaML operators. The operator ⟨M⟩ turns a term of type t into a
term of type ⟨t⟩, while the operators ˜M and run M turn a term of type ⟨t⟩ into a term of type t. Therefore,
intuitively, the latter two operators can be thought of as inverses of the former. For example, we have ⟨1 + 1⟩ ≈
⟨˜⟨1 + 1⟩⟩ ≈ ⟨run ⟨1 + 1⟩⟩. Indeed, when inserted into C = if (run • = 2) () Ω, where Ω is some divergent term,
all three terms terminate. We use our trace model to prove new equational rules that make this intuition precise.

Then we use the imperative power function to illustrate how we can formally prove that staging is faithful. We
also give a general theorem stating the condition under which staging is correct.

Finally, a natural question to ask is whether there exist general equivalences between staged and unstaged
programs in the style of an erasure theorem (Inoue and Taha, 2016). We give a negative answer to this question
by giving terms that only differ in staging annotations but evaluate to different values. This is because staging can
change the execution order of statements, which alters the semantics of a program in an imperative language.

1We have not been able to prove the CIU theorem or to give a counterexample to it in MiniMLmeta
ref .

2

References

Calcagno, Cristiano, Eugenio Moggi, and Tim Sheard (May 2003). “Closed Types for a Safe Imperative MetaML”.
In: Journal of Functional Programming 13.3, pp. 545–571. issn: 1469-7653, 0956-7968. doi: 10.1017/S0956796802004598.
url: https://www.cambridge.org/core/journals/journal- of- functional- programming/article/
closed-types-for-a-safe-imperative-metaml/155E678C81DAE8E2E945180BE177D414 (visited on 02/16/2024).

Honsell, Furio et al. (1995). “A Variable Typed Logic of Effects”. In: Inf. Comput. 119.1, pp. 55–90. doi: 10.1006/
INCO.1995.1077. url: https://doi.org/10.1006/inco.1995.1077 (visited on 03/14/2025).

Inoue, Jun and Walid Taha (Jan. 2016). “Reasoning about Multi-Stage Programs”. In: Journal of Functional
Programming 26, e22. issn: 0956-7968, 1469-7653. doi: 10.1017/S0956796816000253. url: https://www.
cambridge.org/core/journals/journal- of- functional- programming/article/reasoning- about-

multistage-programs/60E3E040633DD97C4B61766123F1D639 (visited on 02/16/2024).
Jaber, Guilhem and Andrzej S. Murawski (2021). “Complete Trace Models of State and Control”. In: Programming

Languages and Systems - 30th European Symposium on Programming, ESOP 2021, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27
- April 1, 2021, Proceedings. Ed. by Nobuko Yoshida. Vol. 12648. Lecture Notes in Computer Science. Springer,
pp. 348–374. doi: 10.1007/978-3-030-72019-3_13. url: https://doi.org/10.1007/978-3-030-72019-
3%5C_13 (visited on 03/14/2025).

Kiselyov, Oleg (2014). “The Design and Implementation of BER MetaOCaml: System Description”. In: Functional
and Logic Programming. Ed. by Michael Codish and Eijiro Sumii. Red. by David Hutchison et al. Vol. 8475.
Cham: Springer International Publishing, pp. 86–102. doi: 10.1007/978-3-319-07151-0_6. url: http:
//link.springer.com/10.1007/978-3-319-07151-0_6 (visited on 02/16/2024).

— (2023). “MetaOCaml Theory and Implementation”. In: CoRR abs/2309.08207. doi: 10.48550/ARXIV.2309.
08207. arXiv: 2309.08207. url: https://doi.org/10.48550/arXiv.2309.08207 (visited on 03/19/2025).

Laird, James (2007). “A Fully Abstract Trace Semantics for General References”. In: Automata, Languages and
Programming. Ed. by Lars Arge et al. Vol. 4596. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 667–679.
doi: 10.1007/978-3-540-73420-8_58. url: http://link.springer.com/10.1007/978-3-540-73420-8_58
(visited on 02/16/2024).

Milner, Robin (1977). “Fully Abstract Models of Typed \emphlambda-Calculi”. In: Theor. Comput. Sci. 4.1, pp. 1–
22. doi: 10.1016/0304-3975(77)90053-6.

Taha, Walid and Tim Sheard (Oct. 6, 2000). “MetaML and Multi-Stage Programming with Explicit Annota-
tions”. In: Theoretical Computer Science. PEPM’97 248.1, pp. 211–242. issn: 0304-3975. doi: 10.1016/S0304-
3975(00)00053-0. url: https://www.sciencedirect.com/science/article/pii/S0304397500000530
(visited on 02/16/2024).

Talcott, Carolyn (Jan. 1, 1998). “Reasoning about Programs With Effects”. In: Electronic Notes in Theoretical
Computer Science. US-Brazil Joint Workshops on the Formal Foundations of Software Systems 14, pp. 301–314.
issn: 1571-0661. doi: 10.1016/S1571-0661(05)80243-9. url: https://www.sciencedirect.com/science/
article/pii/S1571066105802439 (visited on 02/16/2024).

3

