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Background. In the concurrency community, linearizability [10] is the standard of correctness
for concurrent objects. While originally it could only specify non-blocking objects consistent with
sequential objects, over time it was extended into more [13] and more general criteria [3], arriv-
ing at a criterion that is complete for distributed tasks [6] and blocking and non-blocking con-
current objects [14, 15]. In addition, and using insights from concurrent game semantics [5, 11],
Oliveira Vale et al. [14] show that their generalization of linearizability, compositional lineariz-
ability, is a compositional criterion for the speci󰎓cation of concurrent libraries implemented as
collections of parallel programs [15].
However, in their seminal paper Alpern and Schneider [2], show that every property of a con-

current object is the intersection of a safety and a liveness property. Linearizability is always a
safety property and therefore is not enough to fully specify concurrent objects. This is why con-
current data structure implementations [4, 12] are typically shown correct by showing that they
are linearizable to an appropriate linearized speci󰎓cation (safety), and then separately (i.e. directly
on the un-linearized executions) shown to satisfy a progress property [9] (liveness).
As an example, consider a sequential counter speci󰎓ed as the set of traces it generates:

νCounter := {ϵ, get, get · 0, inc, inc · ok, inc · ok · get, inc · ok · get · 1, . . .}
The typical safety property one would state about the counter is functional correctness: that in

every 󰎓nite play s · get if Proponent responds to get then get receives the number #inc(s) of inc
invocations in s as a response. For a concurrent counter ν ′Counter, if one sees a call to get there is
no guarantee of what the return might be, as any number of threads may call inc after the get call,
which might take e󰎎ect before get determines its return value. In lieu of a functional correctness,
the usual consistency condition for a concurrent counter is that ν ′Counter should be linearizable w.r.t.
to νCounter, written ν ′Counter 󲨴 νCounter.
Meanwhile, the typical liveness property for a sequential object is termination: every call to the

counter eventually receives a response. In the concurrent setting, one replaces this for progress
properties, such as lock-freedom, wait-freedom, deadlock-freedom, etc. Typically, one has to verify
these properties directly on ν ′Counter. This has a di󰎎erent 󰎐avor from functional correctness, where
we only check that ν ′Counter 󲨴 νCounter and then that νCounter is functionally correct. The issue
is that linearizability does not re󰎐ect progress properties, in the sense that it could be that the
linearized speci󰎓cation νCounter satis󰎓es the desired progress property, but ν ′Counter does not.

Honest Linearizability. In this talk, we describe an extension to the framework of Oliveira Vale
et al. [15] that allows linearizability to play the role of both a safety property and a liveness prop-
erty. As a result, we show that if an object is linearizable νCounter′ 󲨴h νCounter and then if νCounter sat-
is󰎓es one of the traditional progress property then so does the concurrent implementation νCounter′ .
One of the core ideas to achieve this is the notion of a winning strategy from game semantics

models of logics [1]. Historically, they appear as a solution to the problem that total strategies do
not compose because of the possibility of in󰎓nite stuttering. To solve this, games are equippedwith
a notion of “winning plays” which helps model terminating strategies. Then, while total strategies
do not compose, total winning strategies do.
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Since we want to state arbitrary liveness properties, as opposed to just termination, we equip
not the games but the strategies with winning plays, which we call a win condition. A win condi-
tionω overA is simply any subset of plays (󰎓nite or in󰎓nite) over the gameA. A winning strategy
is then a pair 〈ν ⊨ ω〉 of a strategy ν : A over A such that its set of P-maximal plays are all con-
tained inω, P-max(ν ) ⊆ ω. From the point of view of object speci󰎓cations, we view ν as its safety
property and ω as its liveness property. The set of behaviors that it produces are then ν ∩ω, per
the Alpern-Schneider decomposition. With appropriate assumptions, every object may instead be
fully characterized by ω, which is helpful in practice. By using the computational interpretation
of linearizability from Oliveira Vale et al. [15], which shows a correspondence between lineariz-
ability and the copycat strategy, we can derive an appropriate linearizability criterion for winning
strategies which we call honest linearizability and write 〈ν ′ ⊨ ω′〉 󲨴h 〈ν ⊨ ω〉.
This creates a challenge, however. We model concurrent strategies as non-deterministic strate-

gies built out of non-alternating plays. To show that winning strategies compose, we still would
like to assume totality, which plays a technical role in showing several important lemmas about
P-maximal plays of strategy compositions. Concurrent objects, however, typically satisfy much
weaker termination properties, such as minimal progress (if there is a pending invocation, then
some pending invocation, potentially by a di󰎎erent thread, gets a response). This means that we
may not assume termination, so we must 󰎓nd an alternate route to obtain that total strategies
compose. Our idea, inspired by models of non-deterministic programming languages [7, 8], is to
make silent divergence observable by marking non-terminating invocations q with a special di-
vergence token q ·↺. Composition is then appropriately modi󰎓ed to generate divergences in the
case of in󰎓nite stuttering. Total strategies (in the sense that every question q has a response, be it
an answer or a divergence token) are seen to compose in this more precise model.
The game semantics model we arrive at can state arbitrary liveness properties and therefore

provides a very 󰎐exible model for veri󰎓cation, our intended application. Particularly interesting is
that the model is compatible with both partial and total correctness. The reason for this is that we
may always takeω = PA (i.e.ω admits any play as winning). Then, the object 〈ν ⊨ PA〉 represents a
partially correct objectν . In particular, 〈ν ′ ⊨ PA〉 󲨴h 〈ν ⊨ PA〉 is equivalent toν ′ 󲨴 ν . Meanwhile, if
ω is taken to be some maximal progress property, then we obtain total correctness. For instance,
let starvf be the starvation-freedom property (every invocation returns under fair scheduling).
Then 〈ν ⊨ starvf〉 stands for total correctness under fair scheduling. The model, however, allows
for properties that neither correspond to total or partial correctness. This happens in practice with
minimal progress properties, but also when we tensor partially correct objects with totally correct
objects.
From the point of view of linearizability, we retrieve the key results of compositional lineariz-

ability [15] for honest linearizability, including observational re󰎓nement and locality, which play
a key role in deriving the compositional structure of linearizable implementations. Since hon-
est linearizability subsumes linearizability, we obtain an improved and compatible semantics for
veri󰎓cation of concurrent objects with the previous development in Oliveira Vale et al. [15]. More-
over, we show honest linearizability re󰎐ects all the usual progress properties. This means that it
is enough to verify honest linearizability against a linearized speci󰎓cation satisfying the desired
progress property to obtain that the implementations satisfy the same progress property. We have
extended their program logic to reason about honest linearizability and shown several interesting
concurrent object implementations are honestly linearizable.
I believe these results demonstrate a pleasant instance of how game semantics techniques help

resolve longstanding problems in the compositional veri󰎓cation of complex systems, with inter-
esting theoretical insights and practical applications.
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