Pushdown Normal-Form Bisimulation: A Nominal
Context-Free Approach to Program Equivalence
(Extended Abstract)

Vasileios Koutavas!, Yu-Yang Lin', and Nikos Tzevelekos?

! Trinity College Dublin
2 Queen Mary University of London

Abstract. We present Pushdown Normal Form (PDNF) Bisimulation
for verifying contextual equivalence in higher-order functional languages
with local state. PDNF matches the expressiveness of Normal-Form
bisimulation while remaining decidable for programs with unbounded call
stacks. It relies on the fact that nested reentrant traces form a pushdown
system, enabling reachability to be simulated via finite-state automata.
We define PDNF over a stackless LTS with on-the-fly saturation, and
implement it in a tool that verifies examples previously out of reach.
Published at LICS 2024 [5].

Background. Contextual equivalence asks whether two programs exhibit the same
operational behaviour in all contexts. Normal-Form (NF) bisimulation addresses
this by symbolically handling unknown higher-order arguments. However, NF
bisimulation can lead to unbounded exploration, making verification intractable in
practice and undecidable in general. In particular, nested reentrant calls between
a term and its context create unbounded stacks during verification. This pattern
commonly arises in callback-driven code, e.g., event listeners, reactive systems,
GUI frameworks, and many other uses of the Observer pattern.

Method. We present Pushdown Normal Form (PDNF) Bisimulation, an alternative
to NF bisimulation that finitises verification for programs with unbounded nested
or reentrant calls. PDNF is defined over a stackless LTS with an on-the-fly
saturation procedure[Il2], abstracting away the call stack without loss of precision.
This relies on the fact that such traces form a context-free language, which can
be simulated by finite-state automata recognizing initial/final stack content. Our
approach parallels exact-stack analyses in control-flow analysis[3], and yields a
decidable equivalence for terms reaching bounded stackless configurations, while
retaining support for up-to techniques, such as garbage collection.

Ezample 1. Consider the following equivalent terms, the NF bisimulation game
of which is depicted in Fig. [1| (left).
M = let x = ref 0 in V= fun f -> f(); !l
fun f -> f(); 'x (for location 1)

N= fun f -> f(); 0 V= fun f -> f(); 0

2 Vasileios Koutavas, Yu-Yang Lin, and Nikos Tzevelekos

M,-,- V.-, ret(F) 0,58 ret(0) M, - V,s 0,8 ret(0)
N,-,- Vi=,- 9,-,- N,- v, | O Jo -
s5=0-0 call(Fa,) E-thu 50, 0 0 %o, 0 ret(0)
B=}0
I3 call(F,a;) T
Vo, s [05, -, s calie,0) [Es -, 8] reto) [051, -, 5] ot o " T
I | I | oy, S ()5 L, S S MR
V-, 1030, -,- -, 0;0,-,-] o 070 L callln) [F] reto) Rt
call(F,a;) ‘ ret(0) %, ()50, - 5 50,-
¢ 2, B 2, B Z, B 2, B
Vo ,E 51| [0, B, s1] call(y,0) [ELEs 81| reto) [05 1, E, 51| 5,2 5,[8,2% 0], B,="Vay, 5, V'aty, 1 |%11(Roq)
2 O e 0:0.8,-] ‘ ©
callF) |_ret®) Vo, 5| [0, E,s |0 Joius,
] , - call(e,,()) [r ret(()) R
Va, , - a,(); 0, - E',- 0;0,-
Va,, BB, 5, call(e,() [, BBy 5| rew() [0, E=E, s | e | |nB .8 5,
V', , E'E, - B, BB - l0;0,E:E, -] 22 | lcwbe 2L B
call(Fa) 5= 5,8, 25 B,), B,="Va, 5, Ve, 7 call(F,a,*)
e call/ret : et
call/ret : opponent calls/returns

Fig. 1. NF bisimulations for terms M and N (Example [I); standard /stacked (left) and
pushdown /stackless (right). We use “¢” to denote the top-level continuation and entry
point, and set Yy to be the empty continuation graph. We write “-” for the empty store
and continuation stack.

HoBBIT tests: 129 eq’s and 78 ineq’s| HOBBIT-PDNF tests: 12 eq’s
PDNF HosiT H+reentry PDNF HossiT
Eq. Proven 72 62 67 11 0
Ineq. Proven 7 78 78 N/A N/A
T
10° R . U :
.o .:.;:’.f: :
. ".'l.'
+ g9
0T L | |]
1072 10! 10° 10!

(X) HoBBIT vs. (Y) HoBBIT-PDNF over HOBBIT’s test suite

Table 1. Summary of experiments comparing HoBBIT-PDNF to HoBBIT

Implementation. We implemented PDNF bisimulation in a prototype tool,
HoBBIT-PDNF [6], by modifying the HOBBIT tool [4] for ML-like programs.
HoBBIT-PDNF replaces HOBBIT’s LTS and bisimulation with our Stackless LTS
and PDNF bisimulation, while reusing its front-end, reduction semantics, most
enhancement techniques, and Z3-based constraint solving. The tool is in principle
sound (no false results) and bounded-complete (explores all paths up to a bound).
We evaluated HOBBIT-PDNF against HOBBIT, a reference implementation
of standard (stacked) bisimulation, on a combined test suite of 6680 lines of
code. Experiments ran with a 150-second timeout on an Ubuntu 23.04 machine
equipped with an Intel Core i7 (1.90GHz) CPU and 32GB RAM, running OCaml
4.10.0 and Z3 4.8.10. Results are shown in Table [I} HOBBIT-PDNF performed
strictly better on equivalences, timing out on one inequivalence. HOBBIT-PDNF
correlates linearly against HOBBIT, suggesting comparable performance.

Pushdown Normal-Form Bisimulation 3

References

1. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In A. W. Mazurkiewicz and J. Winkowski, editors,
CONCUR ’97: Concurrency Theory, 8th International Conference, Warsaw, Poland,
July 1-4, 1997, Proceedings, volume 1243 of Lecture Notes in Computer Science,
pages 135—150. Springer, 1997.

. A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems. In F. Moller, editor, Second International Workshop
on Verification of Infinite State Systems, Infinity 1997, Bologna, Italy, July 11-12,
1997, volume 9 of Electronic Notes in Theoretical Computer Science, pages 27-37.
Elsevier, 1997.

. T. Gilray, S. Lyde, M. D. Adams, M. Might, and D. V. Horn. Pushdown control-
flow analysis for free. In R. Bodik and R. Majumdar, editors, Proceedings of the
48rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages
691-704. ACM, 2016.

. V. Koutavas, Y. Lin, and N. Tzevelekos. From bounded checking to verification of
equivalence via symbolic up-to techniques. In D. Fisman and G. Rosu, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Proceedings, Part II, volume 13244 of Lecture Notes in
Computer Science, pages 178-195. Springer, 2022.

. V. Koutavas, Y.-Y. Lin, and N. Tzevelekos. Pushdown normal-form bisimulation: A
nominal context-free approach to program equivalence. In Proceedings of the 39th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 24, New York,
NY, USA, 2024. Association for Computing Machinery.

. Y.-Y. Lin. Laifsvl/hobbit-pdnf: Initial release, May 2024.

	Pushdown Normal-Form Bisimulation: A Nominal Context-Free Approach to Program Equivalence (Extended Abstract)

