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Abstract. We present Pushdown Normal Form (PDNF) Bisimulation
for verifying contextual equivalence in higher-order functional languages
with local state. PDNF matches the expressiveness of Normal-Form
bisimulation while remaining decidable for programs with unbounded call
stacks. It relies on the fact that nested reentrant traces form a pushdown
system, enabling reachability to be simulated via finite-state automata.
We define PDNF over a stackless LTS with on-the-fly saturation, and
implement it in a tool that verifies examples previously out of reach.
Published at LICS 2024 [5].

Background. Contextual equivalence asks whether two programs exhibit the same
operational behaviour in all contexts. Normal-Form (NF) bisimulation addresses
this by symbolically handling unknown higher-order arguments. However, NF
bisimulation can lead to unbounded exploration, making verification intractable in
practice and undecidable in general. In particular, nested reentrant calls between
a term and its context create unbounded stacks during verification. This pattern
commonly arises in callback-driven code, e.g., event listeners, reactive systems,
GUI frameworks, and many other uses of the Observer pattern.

Method. We present Pushdown Normal Form (PDNF) Bisimulation, an alternative
to NF bisimulation that finitises verification for programs with unbounded nested
or reentrant calls. PDNF is defined over a stackless LTS with an on-the-fly
saturation procedure[Il2], abstracting away the call stack without loss of precision.
This relies on the fact that such traces form a context-free language, which can
be simulated by finite-state automata recognizing initial/final stack content. Our
approach parallels exact-stack analyses in control-flow analysis[3], and yields a
decidable equivalence for terms reaching bounded stackless configurations, while
retaining support for up-to techniques, such as garbage collection.

Ezample 1. Consider the following equivalent terms, the NF bisimulation game
of which is depicted in Fig. [1| (left).
M = let x = ref 0 in V= fun f -> f(); !l
fun f -> f(); 'x (for location 1)

N= fun f -> f(); 0 V= fun f -> f(); 0
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Fig. 1. NF bisimulations for terms M and N (Example [I); standard /stacked (left) and
pushdown /stackless (right). We use “¢” to denote the top-level continuation and entry
point, and set Yy to be the empty continuation graph. We write “-” for the empty store
and continuation stack.
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Table 1. Summary of experiments comparing HoBBIT-PDNF to HoBBIT

Implementation. We implemented PDNF bisimulation in a prototype tool,
HoBBIT-PDNF [6], by modifying the HOBBIT tool [4] for ML-like programs.
HoBBIT-PDNF replaces HOBBIT’s LTS and bisimulation with our Stackless LTS
and PDNF bisimulation, while reusing its front-end, reduction semantics, most
enhancement techniques, and Z3-based constraint solving. The tool is in principle
sound (no false results) and bounded-complete (explores all paths up to a bound).
We evaluated HOBBIT-PDNF against HOBBIT, a reference implementation
of standard (stacked) bisimulation, on a combined test suite of 6680 lines of
code. Experiments ran with a 150-second timeout on an Ubuntu 23.04 machine
equipped with an Intel Core i7 (1.90GHz) CPU and 32GB RAM, running OCaml
4.10.0 and Z3 4.8.10. Results are shown in Table [I} HOBBIT-PDNF performed
strictly better on equivalences, timing out on one inequivalence. HOBBIT-PDNF
correlates linearly against HOBBIT, suggesting comparable performance.
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