
Reachability Types, Traces and Full Abstraction

Benedict Bunting Andrzej Murawski

April 2025

This talk is based upon the paper of the same name appearing at LICS 2025 [6]
Type systems that offer control over sharing are seen as a promising technique for improving

program safety and performance. This has been demonstrated by the recent success of Rust, whose
core is based on the shared XOR mutable principle, i.e. sharing is restricted to immutable variables.
This policy turns out to be quite restrictive when it comes to expressing common programming
patterns involving higher-order functions and state, like those expressible in languages such as ML
or Scala. Reachability types [3, 12] are a recent proposal to address this gap and provide a type
system that is capable of collecting information about sharing as well as lack thereof, i.e. separation.

The key idea of reachability types is to track reachable variables/locations by annotating types
with type qualifiers, which contain functions or locations that may be reachable from a given term.
For example, the term h ≜ let r = ref (0) in λf.λx.(!ℓ+ f(!r)+ g(x)), where ℓ is a memory location,
! stands for dereferencing and g : τ is free, would normally be typed as τ → τ with τ ≜ Int → Int.
With reachability types, it can be given the more accurate type below.

(µh.(f : (Int → Int)Q) → (Int → Int){f,g,h,ℓ}){g,ℓ}

The presence of g, ℓ in qualifiers indicates that both the whole term and its functional result may
directly reach the unknown function g and location ℓ. In contrast, f corresponds to a dependency
on resources contributed by the input. h in turn is a self-reference, which allows one to express
the fact that the functional result of h may reach (private) locations (such as r) created by h itself.
In addition, the argument type τQ can be used to specify the degree of overlap between h and its
arguments. Setting Q to ∅ corresponds to demanding that what the argument can reach must be
disjoint from what h can reach, while {ℓ} would allow for scenarios in which the argument may also
reach ℓ, but not g. Similarly, Q = {ℓ, g} would permit h to share ℓ, g with its arguments. Overall,
the idea of tracking reachability at the type level turns out very powerful and can be used to express
many common programming scenarios such as non-interference, non-escaping, non-accessibility and
scoped borrowing [3].

The use of qualifiers in reachability types complicates arguments about contextual equivalence,
such as may be needed justify reachability-type-based program transformations and optimisations [5].
For example, whether the term let f = h() in (let g = h() in f(); g()) is equivalent to let f = h() in
(let g = h() in g(); f()) depends on how h : Unit → (Unit → Unit) is typed. If h : (µh.Unit → (Unit →
Unit){h})∅ then f, g may share the private state of h and the terms will not be equivalent, because
the order of calls can be detected through the state. In contrast, for h : (µh.Unit → (Unit → Unit)∅)∅

the terms will behave in the same way.
In this talk, we explain how to employ operational game semantics [7,8] to provide a formal and

precise account of the underpinning theory of contextual equivalence (and the associated notion of
approximation). Game semantics is already known for providing a wide range of fully abstract models
for various programming paradigms [2,10]. They rely on representing interactions between programs
and contexts as a dialogue between two players: O (context) and P (program). A characteristic
feature of operational game semantics is that these dialogues are generated as traces of a carefully
crafted labelled transition system (LTS), which uses names to represent unknown functions in the
spirit of open/normal-form bisimulation [9,11]. In addition, to capture the sharing of private state,
the traces of our LTS will be decorated with sets of abstract states revealed by the environment.

In order to demonstrate our approach, we introduce a minimalistic language with reachability
types, modelled after λ∗ [3]. As our methods exploit the ability to η-expand terms, the calculus is
based on a notion of well-behaved types, for which η-expansion is guaranteed to be type-preserving.
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We develop an LTS LP , which provides a sound model. In particular, the LTS non-trivially adapts
the classic notion of visibility (originally used to characterise functions that are reachable/visible to
players in a language with first-order references) [1] to the setting of reachability types. Intuitively,
this is done by identifying a family of subtle technical conditions that further restrict visibility to
make it compatible with types.

Building on a definability result, we refine the trace model to a fully abstract one by introducing
rearrangement relations. We show that one can capture contextual equivalence via complete trace
equivalence up to allowable trace permutations. Program approximation in turn can be characterised
through an ordering that allows one to omit certain actions. For example, it turns out that the term
let f = h() in f(1); f(2) approximates let f = h() in f(1) when h : (µh.Unit → (Int → Unit)∅)∅,
because f(1) and f(2) cannot reach any state other than f ’s private one and, consequently, f(2)
does not interfere with the subsequent computation.

At a high level, we see our work as the beginning of a semantic study of reachability types. So
far, the most closely related work in this direction is [4], which provides a sound logical relation for
contextual equivalence.
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