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In the study of concurrent systems, executions are often modeled using pomsets (partially ordered
multisets) rather than sequences of events [22]. In a pomset, concurrent events are represented as labeled
elements with no specific order relative to each other. Various classes of pomsets and their corresponding
automata models exist, reflecting different interpretations of concurrency. Examples include branching
automata and series-parallel pomsets [[17, [18} [19, 20], step transition systems and local trace languages
[12]], communicating finite-state machines and message sequence charts [[15]], asynchronous automata
and Mazurkiewicz traces [28]], and higher-dimensional automata (HDAs) with interval pomsets [8].

HDAs s [23] 25]] are general models of concurrency that extend traditional models like event structures
and safe Petri nets 4} 26], asynchronous transition systems [5, 27/, and Kleene automata. HDAs have
gained significant attention in concurrency theory, offering an automata-like formalism that precisely
captures non-interleaving concurrency. Initially explored through geometric and categorical approaches,
the study of HDAs has shifted toward language theory, particularly since [8]. Key theoretical results
include a Kleene theorem [9], a Myhill-Nerode theorem [[11]], and a Biichi-Elgot-Trakhtenbrot theorem
[2}3]. Higher-dimensional timed automata were introduced in [[7]], with their associated languages stud-
ied in [1]]. These results demonstrate the robustness of the theory and establish a strong foundation.

HDAs consist of a collection of cells representing concurrently running events, connected by face
maps that model the start and termination of events. The language of an HDA is defined as a set of inter-
val pomsets [[13]] with interfaces (interval ipomsets) [10]. Each event in an HDA execution P corresponds
to a time interval of process activity, and the execution is constructed by joining elementary steps that
represent segments of P. This gluing composition allows events to span across segments, linking one part
to the next. HDA languages are inherently closed under subsumption, meaning that every possible order
extension of an execution is accepted. This property supports partial-order reduction and can improve
state-space exploration when modeling systems with HDAs. For example, activity intervals of events are
depicted bellow. Here, we remove precedence order by prolonging intervals i.e., by making the intervals
overlap, from left-to-right, which creates a sequence of subsumptions.
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One of the strengths of HDAs is their suitability for providing operational semantics to models of
concurrent systems. They offer a general framework for concurrency, Among such frameworks, Petri
nets stand out as one of the most established models for concurrency. They capture various concurrency
semantics through a built-in notion of resources (tokens) and are widely used in both academia and
industry due to their intuitive graphical representation combined with high expressiveness. In [4], HDA
and their generalizations are shown to provide an operational semantics for Petri nets and many of their
extensions, including inhibitor, transfer arcs or generalized self-modifying net. For example, Fig. [I]
illustrates Petri net and HDA models for a system with two events, labeled a and b, with the left side
showing their interleaving execution (a.b or b.a) and the right side showing their concurrent execution
(a || b), with a continuous path through the surface of a square.
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Figure 1: Petri net and HDA models distinguishing interleaving (left) from non-interleaving (right) con-
currency. Left: models for a.b + b.a; right: models for a || b.

A pomset with interfaces, or ipomset, (P,<p,--+p,Sp,Tp, Ap) consists of a partially ordered multi-
set (P,<p,--+p,Ap), where Ap is a labelling function, <p (resp --+p) precedence (resp. event) order,
together with subsets Sp, Tp C P (source and target interfaces) such that elements of Sp are <p-minimal
and those of Tp are <p-maximal. The widrh wid(P) of an ipomset P is the cardinality of its maximal
<-antichain. An ipomset P is interval if <p is an interval order [14]; that is, if it admits an interval
representation given by functions b and e from P to real numbers such that b(x) < e(x) for all x € P and
x <pyiff e(x) < b(y) for all x,y € P. In what follows, ipomset means interval ipomset.

In this work, we study ipomsets from a categorical and a logical point of views. We first show that
ipomsets form a category isomorphic to a category of step sequences, which are equivalence classes of
words on special discrete ipomsets called starters and terminators under a natural relation. For example,
below, the ipomset ({x1,...,xa},{(x1,x2), (x3,%1), (x3,x%2) },{(x1,%3), (x1,%42), (x2,%4) }, {x3},0,{(x1,0a),
(x2,a), (x3,¢), (xa,d)}) is depicted on the left, its corresponding step sequence on the middle composed
of six steps: (1) a is started while ¢ is running; (2) c is terminated while a is running, (3) d is started
while a is running, (4) a is terminated while d is running, (5) another a is started while d is running and
finally a and d are terminated, and an interval representation of this ipomset on the right.
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We extend the correspondence between step sequences and ipomsets to the logic side, by showing
that a language of ipomsets with bounded width is MSO-definable if and only if the corresponding
language of step sequences is MSO-definable. More precisely, we construct an MSO interpretation of
ipomsets into step sequences (or rather into their representatives), and of canonical representatives of step
sequences into ipomsets. This shows that, up to isomorphism, MSO has the same expressive power over
step sequences and ipomsets when a width bound is fixed. As corollaries, a Biichi-Elgot-Trakhtenbrot
theorem and an algorithm building an MSO sentence Y satisfied by all the order extensions of the
ipomsets satisfying an MSO sentence y. The latter is not decidable for general pomsets. Also, the
satisfiability and model checking problems for HDAs are both decidable.

These corollaries has motivated further research into the expressive power of first-order logic over
ipomsets. An initial step in this direction appears in [[6]. Along similar lines, another operational model
has begun to receive attention: w-HDAs, that is, HDAs over infinite ipomsets [21]] which is accepted and
will be presented in FSCD2025. Still, in both areas, substantial work remains to be done. In particular,
developing a logical characterization for the infinite case would also be of interest. One may also consider
parity acceptance conditions and parity games, given the important role these play in standard automata
theory. Translations from LTL to parity automata and the use of parity games for synthesis are now
standard applications of formal methods [24,[16]], and one may explore these venues for @-HDAs.
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